134 research outputs found

    De-Quantising the Solution of Deutsch's Problem

    Get PDF
    Probably the simplest and most frequently used way to illustrate the power of quantum computing is to solve the so-called {\it Deutsch's problem}. Consider a Boolean function f:{0,1}→{0,1}f: \{0,1\} \to \{0,1\} and suppose that we have a (classical) black box to compute it. The problem asks whether ff is constant (that is, f(0)=f(1)f(0) = f(1)) or balanced (f(0)=Ìžf(1)f(0) \not= f(1)). Classically, to solve the problem seems to require the computation of f(0)f(0) and f(1) f(1), and then the comparison of results. Is it possible to solve the problem with {\em only one} query on ff? In a famous paper published in 1985, Deutsch posed the problem and obtained a ``quantum'' {\em partial affirmative answer}. In 1998 a complete, probability-one solution was presented by Cleve, Ekert, Macchiavello, and Mosca. Here we will show that the quantum solution can be {\it de-quantised} to a deterministic simpler solution which is as efficient as the quantum one. The use of ``superposition'', a key ingredient of quantum algorithm, is--in this specific case--classically available.Comment: 8 page

    Natural Halting Probabilities, Partial Randomness, and Zeta Functions

    Get PDF
    We introduce the zeta number, natural halting probability and natural complexity of a Turing machine and we relate them to Chaitin's Omega number, halting probability, and program-size complexity. A classification of Turing machines according to their zeta numbers is proposed: divergent, convergent and tuatara. We prove the existence of universal convergent and tuatara machines. Various results on (algorithmic) randomness and partial randomness are proved. For example, we show that the zeta number of a universal tuatara machine is c.e. and random. A new type of partial randomness, asymptotic randomness, is introduced. Finally we show that in contrast to classical (algorithmic) randomness--which cannot be naturally characterised in terms of plain complexity--asymptotic randomness admits such a characterisation.Comment: Accepted for publication in Information and Computin

    Computing A Glimpse of Randomness

    Full text link
    A Chaitin Omega number is the halting probability of a universal Chaitin (self-delimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly non-computable. The aim of this paper is to describe a procedure, which combines Java programming and mathematical proofs, for computing the exact values of the first 64 bits of a Chaitin Omega: 0000001000000100000110001000011010001111110010111011101000010000. Full description of programs and proofs will be given elsewhere.Comment: 16 pages; Experimental Mathematics (accepted

    From Heisenberg to Goedel via Chaitin

    Full text link
    In 1927 Heisenberg discovered that the ``more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa''. Four years later G\"odel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the {\it converse} implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a ``formal uncertainty principle'' which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to {\it all} systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change

    An Observer-Based De-Quantisation of Deutsch’s Algorithm

    Get PDF
    Deutsch’s problem is the simplest and most frequently examined example of computational problem used to demonstrate the superiority of quantum computing over classical computing. Deutsch’s quantum algorithm has been claimed to be faster than any classical ones solving the same problem, only to be discovered later that this was not the case. Various dequantised solutions for Deutsch’s quantum algorithm—classical solutions which are as efficient as the quantum one—have been proposed in the literature. These solutions are based on the possibility of classically simulating “superpositions”, a key ingredient of quantum algorithms, in particular, Deutsch’s algorithm. The de-quantisation proposed in this note is based on a classical simulation of the quantum measurement achieved with a model of observed system. As in some previous dequantisations of Deutsch’s quantum algorithm, the resulting dequantised algorithm is deterministic. Finally, we classify observers (as finite state automata) that can solve the problem in terms of their “observational power”

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur

    A note on the differences of computably enumerable reals

    Get PDF
    We show that given any non-computable left-c.e. real α there exists a left-c.e. real ÎČ such that α≠ÎČ+Îł for all left-c.e. reals and all right-c.e. reals Îł. The proof is non-uniform, the dichotomy being whether the given real α is Martin-Loef random or not. It follows that given any universal machine U, there is another universal machine V such that the halting probability of U is not a translation of the halting probability of V by a left-c.e. real. We do not know if there is a uniform proof of this fact

    How much contextuality?

    Full text link
    The amount of contextuality is quantified in terms of the probability of the necessary violations of noncontextual assignments to counterfactual elements of physical reality.Comment: 5 pages, 3 figure
    • 

    corecore